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ON THE ADAPTIVE IMPLEMENTATION OF PISARENKO'S HARMONIC RETRIEVAL METHOD
V. U. Reddy”, B. Egardt™ and T. Kailath”

AFOSR-TR- 8 2 - 0476 SUMMARY

The development of adaptive techniques for estimating the parameters

of sinusoidal signals in additive noise is important in many applications.
The so-called adaptive 1ine enhancer(ALE) proposed by Widrow et al.[1] has
been a popular solution. The ALE is a tapped-delay-line filter of some
fixed length, whose tap gains are recursively adjusted by using the so-called ?
LMS[1] algorithm so that they converge to the solution of the normal equ- ;
ations for the one-step minimum mean-square-error prediction problem. Another i
popular solution uses a so-called 1adder or lattice filter whose parameters
are adjusted by using a technique, due to Burg[2], based on minimizing the
sum of certain forward and backward one-step prediction residuals. Burg's
technique is an off-l1ine one. Griffiths[3] merged the above approaches by
proposing a lattice filter whose coefficients were adapted by using the
LMS algorithm, leading to what is often called a gradient lattice(or ladder)
filter.
The above three approaches all yield spectral estimates with fairly

- sharp peaks but the estimates of the sinusoidal frequencies invariably

appear to be biased when the sinusoids are observed in the presence of

additive white noise.
In an attempt to improve the above methods with respect to bias,

Ulrych and Claytonf4] have proposed a least-squares fitting of an auto-
} regressive model, based on a criterion involving both forward and back-
ward prediction errors but, unlike Burg’s method, without using a ladder
filter model. With the help of simulation results they have demonstrated
that the bias in the spectral estimates can be reduced significantly
i compared to the Burg technique. It should be noted, though, that this is
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true only for short data lengths, since all the above techniques give
identical results for large da*a lengths.

Possibilities for improvement of the above approaches becomes apparent
when one considers that they were all designed to converge to the optimum
linear least-squares solution for the prediction of any random process,
and do not specifically exploit the fact that the signal® are
sinusoidal. Pisarenko[5] was perhaps the first to attempt to do this in his
so-called "harmonic retrieval" method, which involves determining the mini-
mum eigenvalue and the corresponding eigenvector of the covariance matrix
of the observed random process. Thompson[6] noted that this eigenvalue-
eigenvector computation was equivalent to a certain constrained gradient-
search procedure for gbtaining an adaptive version of Pisarenko’s method.
Thompson’s simulations verified that the frequency estimates provided by
his procedure were unbiased. However, the main cost of this technique was
that the initial convergence rate may be very sltow for certain poor
"initial conditions”.

One of the goals of this paper is to consider a way of provfding faster
initial convergence by using a different algorithm for the above problem.
Restating the constrained minimization as an unconstrained nonlinear pro-
blem, we derived the following two adaptive algorithms.

Consider the adaptive filter with constrained coefficients, as sugg-
ested by Thompson, shown in Fig.1l. The observed process, consisting of a
sum of sinusoids and white noise, is denoted by a time series x(k). The
filter output e(k) can be expressed as the inner product

e(k}= ATx(k) (1)
where - _ T

A= [ao,, ......... . aL-I] (2a)

X(k)= [x(K) X (k=1)5ennnnn x(k-L+1)]T (2b)
and A= A/ 1]All

is the constrained unit-norm vector. T denotes the matrix transpose.
a. Gradient-Type (LMS) Scheme
The adaptation criterion for the filter of Fig. 1 is

J= 1E[e?(k)] (3)
Expressing e(k) in terms of unnormalized weight vector A,
e(k)= ATX(K)/ [{A I (4)
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the gradient estimate at k-th sample instant is

U= _1_ [etx() - efk) _RAk-1) ] (5)
Wa(k-1) NAK-1)M
The time update for the normalized i-th coefficient is then given by
3;(K)= &(k)§ 3y (k-1)- plel)x(k-1)-e2(kJay (k-1)1 } (6)
where K(k)= NAK-1I 7 NAGK) 1]

and fLis a positive scalar constant. Equation (6) describes the constrained
LMS algorithm.
The stationary points of the above algorithm are given by the equation

~
E{[X(k)-e(k)A] e(k)]} =0
which, using Eq.(1), can be simplified to give
AN A A

EQX(OXT ()} A= AT E{x(xT(k)} A2
Clearly, every eigenvector of the covariance matrix satisfies this equation.
By a somewhat more involved argument it can be shown that only the eigen-
vector corresponding to the minimum eigenvalue gives a stable stationary -
point.

b. Approximate Deterministic Least-Squares Algorithm

For an alternative algorithm, we choose the adaptation criterion for
the filter of Fig. iras the minimization of
V=19 e?(s) - (7)

=0
with respect to the unit-norm vector A. Because of the constraint on the

weight vector, the minimization of (7) is a nonlinear problem and an exact
least-squares solution does not appear to exist. We, therefore, derive an
approximate solution using a Gauss-Newton type algorithm.

Once again, expressing e(s) as

e(s)= ATX(S)/IIA T Accession For -
. NTIS GRA&T x‘—
we obtain F DTIC TAR ‘
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where _
Y (s)= X(s) - Re(s) (10)
From (8),(9) and (10), the Gauss-Newton algorithm can be obtained as
follows: ~ A
’ A(k)= oL(k)[A(k-1)-P(k) ¥(k)e(k)] (11a)

P(k-1) W (k) P (K)P(k-1)
1+ (k)P(k-1) P(k)
¥ (k)= X(k)- A(k-1)e(k) (11c)

where o{(k) is a scalar constant whose value is chosen such that the updated

weight vector has unit norm. In practical applications,an exponential wei-

ghting with the so-called forgetting factor,>\,is applied to the data so

as to track the slowly varying parameters of the data. This weighting ref-

Tects in recursion (11b) in two ways. i) The right-hand-side is divided by
A , and ii) unity in the denominator is replaced by A .

Simulations have been performed to study the properties of the above
two schemes. Figures 2 and 3 show the spectral estimates obtained with the
two techniques. Twe sinusoids of normalized frequencies 0.15 and 0.20 are
used in the examples. The most important conclusions that can be drawn from
the results are the following.

The least-squares-type algorithm has faster initial convergence. For
poor signal-to-noise ratio, both algorithms perform similarly close to the
true parameters. The removal of the bias in the frequency estimates is
slower than the resolution between different frequencies.
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Fig. 2 Simulated spectral estimates (SNR=0 dB, L=7)
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(b) Approximate least-squares algorithm {x=0.98, P(0)=100)

Fig. 3 Simulated spectral estimates

(SNR=12 dB, L=5)
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